

EMERSON XEV20D Stepper Valve Actuator User Guide

Home » Emerson » EMERSON XEV20D Stepper Valve Actuator User Guide 🖺

EMERSON XEV20D Stepper Valve Actuator User Guide

Contents

- **1 General Warnings**
- **2 General Description**
- **3 Absolute Maximum**

Power

- **4 Wiring Diagram**
- **5 Valve Connections**
- 6 Serial Line CanBus
- 7 LEDs Meaning
- **8 Technical Data**
- 9 CUSTOMER SUPPORT
- 10 Documents / Resources
 - 10.1 References

General Warnings

PLEASE READ BEFORE USING THIS MANUAL

- This manual is part of the product and should be kept near the instrument for easy and q uick reference.
- The instrument shall not be used for purposes different from those described hereunder. It cannot be used as a safety device.
- Check the application limits before proceeding.

SAFETY PRECAUTIONS

- Check if the supply voltage is correct before connecting the instrument.
- Do not expose to water or moisture: use the controller only within the operating limits avo iding sudden temperature changes with high atmospheric humidity to prevent formation of condensation.
- Warning: Disconnect all electrical connections before any kind of maintenance.
- Fit the probe where it is not accessible by the end user. The instrument must not be opened.
- In case of failure or faulty operation send the instrument back to the distributor or to "Dix ell S.p.A." with a detailed description of the fault.
- Consider the maximum current which can be applied to each relay (see Technical Data).
- Ensure that the wires for probes, loads and the power supply are separated and far enou gh from each other, without crossing or intertwining.
- In case of applications in industrial environments, the use of mains filters (our mod. FT1) in parallel with inductive loads could be useful.

General Description

AWARNING

XEV20D is a stepper valve actuator intended either for bipolar stepper valves or unipolar stepper valves. This device has been used with ISaGRAF® environment and with programmable devices of iPRO series or in combination with instruments of i-CHILL 200CX series.

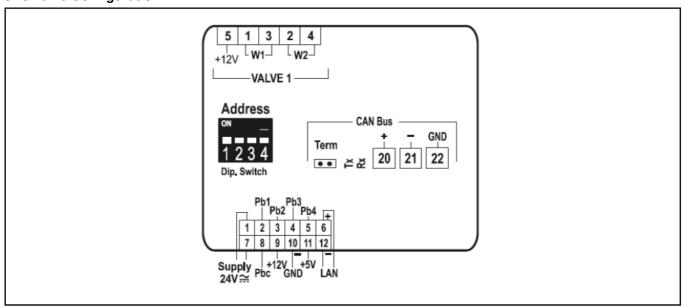
The maximum configuration of hardware is equipped with:

- 2 configurable valve outputs to drive bipolar or unipolar valves
- Pb1/Pb2 configurable analog inputs: NTC/PTC/Pt1000
- Pb3/Pb4 configurable analog inputs: 4 to20mA/0 to5V/Pt1000
- CanBus serial line
- LAN to communicate with instrument of the same series or devices of i-CHILL200CX series

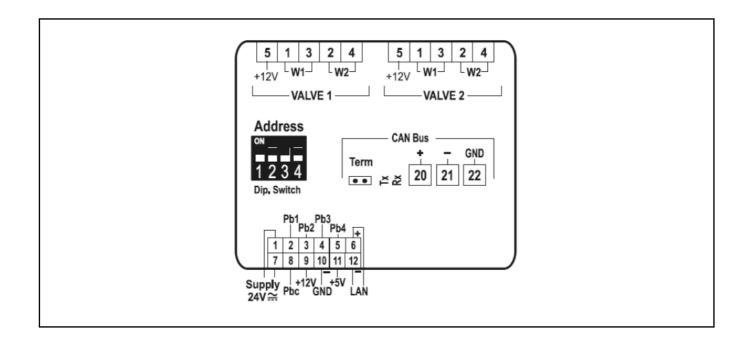
Absolute Maximum Power

XEV20D is able to drive a wide range of stepper valves, in the following table are indicated the maximum values of current that the actuator can supply to the stepper wiring.

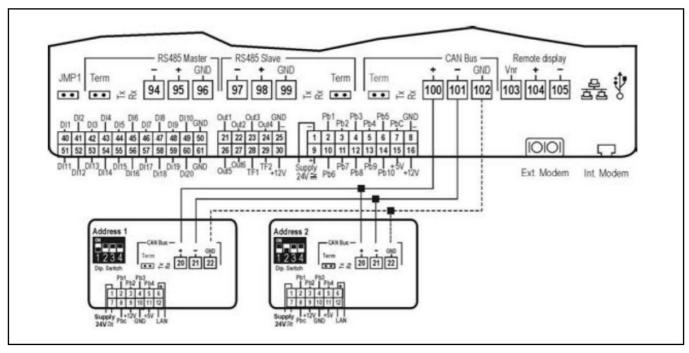
Select the current transformer depending on application seeing the following table, for each kind of driving and


functioning is reported the Dixell transformer to use.

NOTE: The electrical power absorption of the valve can be unrelated to refrigeration power that valve has. Before using the actuator, please read the technical manual of the valve supplied by the manufacturer and check the maximum current used to drive the valve in order to verify that they are lower than those indicated below.


		CONFIGURATION		
		ONE VALVE	TWO VALVES	
	Driving Mode	Full Step	Full Step	
	Bipolar Valves (4 wires)	Current 0.9A max > TF20D	Current 0.9A max for each v alve > TF40D	
Valve Type	Unipolar Valves (5-6 wires)	Current 0.33A max > TF20D	Current 0.33A max for each valve > TF20D	

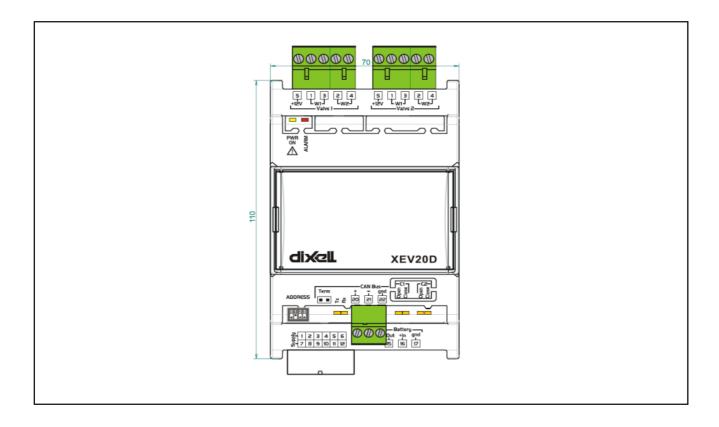
Wiring Diagram


One Valve Configuration

Two Valves Configuration

IPro Connections

Valve Connections


Pay attention to the following table for a quick reference on the connection mode for valves of different manufacturers:

4 WIRES VALVES (BIPOLAR)

Connection Numbering	ALCO EX*	ALCO EX5/6	SPORLAN SEI-SH E	DANFOSS ETS
4	White	Blue	White	Black
2	Yellow	Brown	Black	White
3	Brown	Black	Red	Red
1	Green	White	Green	Green
5 – Common				

5-6 WIRES VALVES (UNIPOLAR)

Connection Numbering	SPORLAN	SAGINOMIYA
4	Orange	Orange
2	Red	Red
3	Yellow	Yellow
1	Black	Black
5 – Common	Gray	Gray

Serial Line - CanBus

The device can communicate through CanBus serial line only when a correct address is set.

The addressing is made through the dip-switch called Address as you can see in the following drawing:

Figure 6-1 – CanBus Serial Line

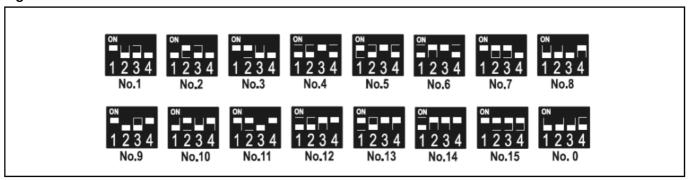
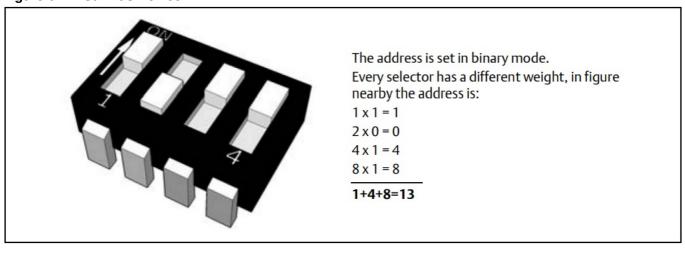



Figure 6-2 - CanBus Device

The following table has to be used to configure ISaGRAF lines to connect the valve actuator.

LINE	GEN_LINE	GEN_AO	GEN_AO	GEN_AO	GEN_A1	GEN_DI
channel numb er		4	2	7	4	3
line_num	CanBus Numb er	CanBus Num ber	CanBus Number	CanBus Num ber	CanBus Nu mber	CanBus Nu mber
name	CAN					
par_1	CanBus Numb er	CanBus Num ber	CanBus Number	CanBus Num ber	CanBus Nu mber	CanBus Nu mber
par_2	CAN node add ress	16	17	26	1	31
par_3	10					
I/O 1		EVV_StepsOu tp ut Valve 1	EEV_OutRat eV alve 1	EVV_ProbeT Co nfiguration Valve 1	EVV_Temper at ure Valve 1	EVV_ValveP osi tion Valv e 1

LINE	GEN_LINE	GEN_AO	GEN_AO	GEN_AO	GEN_A1	GEN_DI
I/O 2		EVV_StepsOu tp ut Valve 2	EEV_OutRat eV alve 2	EVV_ProbeT Co nfiguration Valve 2	EVV_Temper at ure Valve 2	EVV_ValveP osi tion Valv e 2
I/O 3		EVV_Steps M axValve 1		EVV_ProbeP Co nfiguration Valve 1	EVV_Pressur e Valve 1	
I/O 4		EVV_Steps M axValve 2		EVV_ProbeP Co nfiguration Valve 2	EVV_Pressur e Valve 2	
I/O 5				EVV_OutPha sC urrent Val ve 1		
I/O 6				EVV_OutPha sC urrent Val ve 2		
I/O 7				EVV_OutValv eC onfiguratio n		
I/O 8						

LEDs Meaning

The following table has to be used to configure ISaGRAF lines to connect the valve actuator.

LED	MODE	MEANING
PWR ON	On	The device is correctly powered
ALARM	On	An alarm is present
TX/RX	Blinking	CanBus or LAN activity, communication activated
TX/RX	On	No link
OPEN V1	Blinking	Valve 1 is opening
OPEN V1	On	Valve 1 completely opened
CLOSE V1	Blinking	Valve 1 is closing
CLOSE V1	On	Valve 1 completely closed
OPEN V2	Blinking	Valve 2 is opening
OPEN V2	On	Valve 2 completely opened
CLOSE V2	Blinking	Valve 2 is closing
CLOSE V2	On	Valve 2 completely closed

Technical Data

Case	4 DIN		
Connectors	Disconnectable terminal block ≤ 2,5 mm2 for valve outputs and minifit c onnector for low voltage section		
Power Supply	24Vac/dc; Absorption: 40VA max.		
Probe Inputs	2 configurable as NTC/PTC/Pt1000 2 configurable as NTC/PTC/Pt1000/4 to 20mA/ to 5V		
Valve Output(s)	See table on page 3		
Serial Connection	CanBus and LAN for iCHILL200CX		
Data Storing	Non volatile memory (EEPROM)		
Kind of Action	1B; Pollution Grade: 2; Software Class: A		
Rated Impulsive Voltage	2500V; Over-voltage Category: II		
Operating Temperature	10 to 60 °C; Storage Temperature: –30 to 85 °C		
Relative Humidity	20 to 85% (no condensing)		
Measuring and Regulation Range	PTC Probe: -50 to150°C NTC Probe: -40 to110°C Pt1000 Probe: -50 to 100°C Pressure Transducer: -1.0 to 50.0 Bar		
Resolution	0,1°C or 1 °F; Precisione@ 25°C: ±0,1 °C ±1 digit		

CUSTOMER SUPPORT

The contents of this publication are presented for informational purposes only and they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability.

Emerson reserves the right to modify the designs or specifications of such products at any time without notice. Responsibility for proper selection, use and maintenance of any product remains solely with the purchaser and end-user.

©2022 Emerson is a trademark of Emerson Electric Co.

This document may be photocopied for personal use.

Visit our website at: www.climate.emerson.com for the latest technical documentation and updates.

Join Emerson Technical Support on Facebook: http://on.fb.me/WUQRnt
For Technical Support call 833-409-7505 or email Cold Chain. TechnicalServices@Emerson.com

Documents / Resources

EMERSON XEV20D Stepper Valve Actuator [pdf] User Guide XEV20D, XEV20D Stepper Valve Actuator, Stepper Valve Actuator, Valve Actuator, Actuator

References

- 1 Emerson Retail Solutions Tech Support | Facebook
- Residual Copeland US
- Copeland is Engineered for Sustainability | Copeland US

Manuals+,